

LISTE DES COMPOSANTS ET APPAREILS DE BASE A CONNAITRE A L'ISSUE DU TP

Vous trouverez dans le tableau suivant l'ensemble des composants électroniques utilisés dans ce TP. On rappelle que l'utilisation des « **Mots clés** » accélère la recherche des composants dans la boîte de dialogue «**Pick Devices**» de Proteus Cochez la case **identique sur tous les mots** si vous saisissez le nom complet du composant dans « Mots clés » :

Nom réel du composant	Nom exact du composant (colonne Device dans la catégorie) à saisir dans Mots clés	Catégorie contenant le composant			
Une batterie d'accumulateur composée de plusieurs cellules	BATTERY	Miscellaneous			
Une pile (composée d'une seule cell ule)	CELL	Miscellaneous			
Une résistance	RES	Resistors			
Un potentiomètre	POT-LIN	Resistors			
Une LED rouge	Une LED rouge LED-RED				
Une LED jaune	LED-YELLOW	Optoelectronics			
Une LED verte	LED-GREEN	Optoelectronics			
Une LED bleue	LED-BLUE	Optoelectronics			
Une ampoule	LAMP	Optoelectronics			
Un bouton poussoir	bouton poussoir BUTTON				
Un interrupteur simple	SWITCH	Switches & Relays			
Un interrupteur va-et-vient	SW-SPDT	Switches & Relays			
Un interrupteur 3 positions	SW-ROT-3	Switches & Relays			
Capteur de présence interactif	TOUCHPAD	Miscellaneous			
Une torche interactive et un capteur de lumière (LDR)	TORCH_LDR	Miscellaneous			
Un comparateur de tension	OPAMP	Operational Amplifiers			

Vous trouverez dans le tableau suivant les trois appareils de mesure de base et le générateur de tension variable (GBF = Générateur Basse Fréquence = générateur de signal) à connaître sous Proteus. Tous ces appareils de mesure se trouvent dans le **« Mode instruments virtuels »** accessible par le bouton du même nom dans Proteus :

Nom réel de l'appareil	Nom exact dans le Mode instruments virtuels
Un voltmètre	DC VOLTMETER
Un ampèremètre	DC AMMETER
Un oscilloscope	OSCILLOSCOPE
Un générateur de tension variable (GBF)	SIGNAL GENERATOR

> Le préfixe DC indique que l'appareil est fait pour mesurer du courant continu ;

> Le préfixe AC indique que l'appareil est fait pour mesurer du courant alternatif ;

L'ampèremètre possède 3 calibres (microampère, milliampère et ampère) qu'il faut choisir consciemment afin d'obtenir une précision maximale dans la mesure : le choix du calibre n'est pas automatique

UTILISATION DES INTERRUPTEURS, DES AMPOULES ET DES LED

TRAVAIL Nº1 :

> Ouvrez le logiciel de simulation ISIS de Proteus. Il est disponible dans le menu :

Démarrer \rightarrow **Tous les programmes** \rightarrow **Proteus 7 Professional**

Agrandissez sa fenêtre à tout l'écran. Ouvrez la boîte de dialogue **Pick Devices** permettant d'ajouter de nouveaux composant à votre projet : pour cela appuyez simplement sur la touche P du clavier.

- * Un interrupteur SWITCH
- * Un interrupteur SW-SPDT
- * Un interrupteur SW-ROT-3
- * Un bouton poussoir BUTTON
- Une ampoule LAMP
- * Une LED rouge LED-RED
- Une résistance RES
- Composant CELL BAT1 12V Montage 1
- Réaliser le Montage 1 ci-dessus utilisant une pile CELL configurée à 12V, un interrupteur SWITCH et une ampoule de 12V LAMP puis lancez la simulation en appuyant sur le bouton Jouer disponible en bas à gauche de l'écran. Cliquez sur l'interrupteur et observez l'état de l'ampoule. Remarque : le bouton Arrêt disponible en bas à gauche de l'écran permet d'arrêter la simulation afin de pouvoir modifier le schéma.

TRAVAIL N°2 :

Arrêtez la simulation puis modifiez votre montage afin de réaliser le Montage 2 utilisant un interrupteur SW-SPDT et une seconde ampoule LAMP :

Montage 2

Arrêtez la simulation puis modifiez votre montage afin de réaliser le Montage 4 utilisant deux interrupteurs SWITCH, une LED rouge LED-RED et une résistance RES de 470 W :

Montage 4

Complétez le tableau page suivante en indiquant l'état de la LED D1 du Montage 4 pour chacun des états des interrupteurs A et B et indiquer la fonction logique réalisée :

Etat de l'interrupteur A	Etat de l'interrupteur B	Etat de la LED D1 (allumée ou éteinte)
ouvert	ouvert	
ouvert	fermé	
fermé	ouvert	
fermé	fermé	

> Arrêtez la simulation puis modifiez votre montage afin de réaliser le Montage 5 :

Complétez le tableau suivant en indiquant l'état de la LED D1 du Montage 5 pour chacun des états des interrupteurs A et B et indiquez la fonction logique réalisée :

Etat de l'interrupteur A	Etat de l'interrupteur B	Etat de la LED D1
ouvert	ouvert	
ouvert	fermé	
fermé	ouvert	
fermé	fermé	

DECOUVERTE DE DEUX NOUVEAUX COMPOSANTS INTERACTIFS

Un composant interactif est un composant sur lequel l'utilisateur peut agir durant la simulation afin de modifier le comportement du montage électronique. Tous les interrupteurs vus précédemment sont des composants interactifs. Vous allez maintenant découvrir deux nouveaux composants bien pratiques dont l'utilisation est à retenir pour vos futurs montages : le capteur de présence **TOUCHPAD** et le capteur de lumière **TORCH_LDR**.

TRAVAIL Nº1 :

- Ajoutez les composants TOUCHPAD et TORCH_LDR dans votre sélecteur puis réalisez le Montage 7 utilisant un composant TOUCHPAD et un voltmètre DC VOLTMETER : (La masse est le composant GROUND disponible dans le « Mode terminal » de Proteus)
- Lancez la simulation, agissez sur les deux boutons rouges du capteur de présence **TOUCHPAD** et observez la variation de tension sur le voltmètre.
- Lorsque l'utilisateur approche sa main du capteur de présence **TOUCHPAD**, comment évolue la tension délivrée par le capteur ? augmente ou diminue
- Quelle est la valeur maximale de la tension délivrée par le capteur TOUCHPAD ?
- Quelle est la valeur minimale de la tension délivrée par le capteur TOUCHPAD ?
- La valeur maximale délivrée par le capteur TOUCHPAD est parfaitement configurable dans les propriétés du composant en modifiant le paramètre VOUT when touching. Réglez le comportement du

capteur **TOUCHPAD** afin que la tension délivrée varie entre 0 V et 12 V puis tester le comportement du capteur.

TRAVAIL N°2 :

Le dernier composant interactif à découvrir est le capteur de lumière. Réalisez le Montage 8 avec un composant **TORCH_LDR** (capteur de lumière associé à une torche), un ampèremètre, un voltmètre et une pile :

Remarque : une LDR est une résistance particulière dont la valeur varie en fonction de la lumière reçue.

Les 10 positions de la torche sont appelées position 0 (lorsque la torche est très éloignée du capteur de lumière) à position 9 (lorsque la torche est au plus près de la LDR). Lancez la simulation puis complétez le tableau suivant indiquant la tension, le courant (avec l'ampèremètre sur le meilleur calibre ...) et la résistance de la LDR :

Position de la torche \rightarrow	0	1	2	3	4	5	6	7	8	9
Tension aux bornes de la LDR \rightarrow										
Courant circulant dans la LDR \rightarrow										
Résistance de la LDR \rightarrow										

Lorsque la lumière reçue sur le capteur LDR augmente, comment évolue la résistance de la LDR ?

UTILISATION DU GBF ET DE L'OSCILLOSCOPE

Créez un nouveau projet dans Proteus sans rien enregistrer (menu Fichier + Nouveau projet) puis réalisez le Montage 10 utilisant un générateur de signal et un oscilloscope.

Lancez la simulation puis agissez sur les 4 boutons suivant du générateur tout en observant l'allure de la tension sur l'oscilloscope :

Montage 10

Frequency Centre, **Frequency Range**, **Amplitude Level** et **Waveform** (ne pas toucher les boutons **Amplitude Range** et **Polarity** du GBF ni les réglages de l'oscilloscope)

Le seul objectif de ce paragraphe est de vous montrer l'existence, l'emplacement et le câblage du GBF et de l'oscilloscope dans Proteus. Ces appareils virtuels doivent vous rappeler les appareils réels que vous avez déjà utilisés. Comme tous les appareils de mesure, la maîtrise du GBF et de l'oscilloscope s'acquiert progressivement par une utilisation fréquente et régulière que vous aurez l'occasion de renouveler dans les futurs TP.

APPLICATION N°1

- Créez un nouveau projet dans Proteus sans rien enregistrer puis réalisez le Montage 12 en réglant tous les composants afin que :
 - Le capteur de présence TOUCHPAD délivre une tension comprise entre 0V et 12V
 - La pile fournisse une tension de 12V

المدرسة العليا للتكنولوجيا ADEN A.J.HRRAI ARCHITEA ECOLE SUPERIEURE DE TECHNOLOGIE

- Les comparateurs de tension délivrent en sortie soit 0V soit 12V
- Les 3 résistances valent 10 kΩ
- Complétez le tableau suivant en indiquant le potentiel en chacun des point E, A, B, S1 et S2 du schéma, et ce pour chacune des positions de la main par rapport au capteur de présence (position 0 = main éloignée du capteur) :

APPLICATION N°2

Créez un nouveau projet dans Proteus sans rien enregistrer. Vous allez maintenant proposer un montage électronique, basé sur le principe du Montage 12, et permettant de mesurer la quantité de lumière ambiante. Vous utiliserez pour cela le capteur de lumière **TORCH_LDR**, 3 comparateurs de tension (délivrant soit 0V soit 12V ensortie), 3 LED de couleur différente (une jaune, une verte et une bleue), ainsi qu'une pile de 12 V et des résistances qu'il vous appartient de dimensionner.

Proposez dans Proteus un montage répondant au fonctionnement décrit dans le tableau suivant (rappel : la position 0 de la torche correspond à l'obscurité totale) :

Position de la torche $ ightarrow$	0	1	2	3	4	5	6	7	8	9
Etat de la LED jaune $ ightarrow$	éteinte	éteinte	éteinte	allumée						
Etat de la LED verte $ ightarrow$	éteinte	éteinte	éteinte	éteinte	éteinte	allumée	allumée	allumée	allumée	allumée
Etat de la LED bleue $ ightarrow$	éteinte	allumée	allumée	allumée						

Testez votre montage, modifiez-le en cas de dysfonctionnement, puis faite valider par le professeur votre solution une fois qu'elle est parfaitement fonctionnelle.